Thue- Morse constant approximants' use in fitting physical observables ratios’ numerical values

F.J. Culetto and W. Culetto*)
Private Research Associates, Stallhofen 59-60, A-9821 Obervellach, Austria
*Electronic address: werner.culetto@inode.at
(Dated: June 19, 2011)

Abstract

As an update of our previous heuristic and tentative work on the possible role of fractal geometry (in a more general sense) in scaling electrodynamics' fundamentals (see the physics files of our contentious results website, http://culetto.at/private research associates/ ...), recent progress in improvement of the former approximation formulas' quality of fit (AFQF) is reported.

AFQF - enhancement, regardless of whether true or accidental relation

As a crude approximation (i.e. to 63ppm) to the electron rest mass - dressed "indivisible" entity rest mass ratio's numerical value $m_{e} /<m_{0}>=2.33911229 \ldots \times 10^{6}$ (the entity spoken of with almost no features of its own, dressed by the electroweak, strong and further four even stronger interactions/forces, gravity included), Eq.(1) was found

$$
\begin{equation*}
\frac{m_{e}}{\left\langle m_{0}\right\rangle} \approx \frac{2 P \sqrt{P}}{2^{2 P}} \frac{\ln (\delta)^{2}}{\ln (2)}\left(\exp \left(\mathrm{P}^{1 / 2} \mathrm{e}^{\pi / 2} \mathrm{~m}^{\mathrm{e} / 2}\right)\right) \tag{1}
\end{equation*}
$$

(http://culetto.at/private research associates/sciencephilosophy7.pdf), where P is the Thue-Morse constant and δ Feigenbaum's universal number. When stopping the period doubling ($\mathrm{c}_{k} \mathrm{~s}$ of the main sequence on Mandelbrot set's real c -axis) at the $4^{\text {th }}$ bifurcation (with accessory upper external angle $\xi\left(c_{2} 4\right)=106 / 257$ as $n=4$ approximant to P) instead of going to the infinite-k limit of the (upper) external angles ending up with P, Eq.(1)'s AFQF can be improved to 9.4 ppm , the fit value got been $2.339134 \ldots \times 10^{6}$. By a trial-and-error method testing of the $\exp ()$-function's pre-factor, the optimum fit formula got thus reads

$$
\begin{equation*}
\frac{m_{e}}{\left\langle m_{0}\right\rangle} \approx \frac{\left(4+2 c_{D}\right)}{\left(4+c_{D}\right)} \frac{\ln (\delta)}{\ln (2)}\left(\exp \left(P_{4}^{1 / 2} e^{\pi / 2} \pi^{e / 2}\right)\right), P_{4}=106 / 257 \tag{2}
\end{equation*}
$$

where c_{D} is the Myrberg-Feigenbaum point's coordinate, and Eq.(2)'s AFQF is 0.23ppm, the fit value got been $2.33911284 \ldots \times 10^{6}$. The (formal) masses ratio's shape apparently gives a "log-potentials"-ratio more understandable (formally in line with the $\ln \left(\delta_{2 \mathrm{D}}\right) / \ln (\delta)$ one of the Planck mass - electron mass ratio approximation given in sciencephilosophy. pdf), Eq.(2) also containing $|c|=4$, the maximum in modulus of c up to which Mandelbrot set M's universality is guaranteed.

And for the proton - electron rest mass ratio (see the sciencephilosophy7 file, Eq.2),

$$
\begin{equation*}
\frac{m_{p}}{m_{e}} \approx \frac{P_{4} \ln \left(\delta_{2 D}\right)}{c_{D} \ln (\delta)}\left(\frac{1}{\gamma \ln \left(2 \pi \delta^{2} \alpha\left(0 ; P_{4}\right)\right)}-\frac{\pi P_{4}}{2}\right), \tag{3}
\end{equation*}
$$

P_{4} being the $\mathrm{n}=4$ approximant to $\mathrm{P}, \delta_{2 \mathrm{D}}$ Feigenbaum's number for an area-preserving 2Dmapping (Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction, 225 Wiley, New York, 1989; Weisstein, Eric W. "Feigenbaum Constant". From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FeigenbaumConstant.html), y the Euler-Mascheroni constant and $\alpha\left(0 ; P_{4}\right)$ the fine-structure constant α 's (sciencephilosophy file's Eq.1, P replaced by P_{4}) approximated value, the AFQF gets 0.12 ppm with respect to the m_{p} / m_{e} CODATA 2010 value. Same vice versa is true of Eq.(3)'s version nearer to number theory (see sciencephilosophy5 and 7 files' Eq.1, now replacing P there by P_{4}),

$$
\begin{equation*}
\frac{m_{p}}{m_{e}} \approx \frac{P_{4} \ln \left(\delta_{2 D}\right)}{\left|C_{D}\right| \ln (\delta)}\left(e^{\pi+1} \pi^{e+1}\right) \tag{4}
\end{equation*}
$$

the fit value got been 1836.152 454...compared to $1836.152672 \ldots$...from CODATA 2010). In case of $\alpha(0 ; P)$'s $\left(=\alpha(0)\right.$ of the sciencephilosophy file, Eq. 1) use instead of the $\alpha\left(0 ; P_{4}\right)$ approximant, Eq.(3)'s fit value stays unchanged within the AFQF granted, the ratio got been 1836.152 452...And the fine-structure constant $\alpha(0)$'s (sciencephilosophy.pdf, Eq.1) approximated value from

$$
\begin{equation*}
\alpha(0) \approx \frac{1}{2 \pi \delta^{2}}\left(\exp \left(-\frac{1}{\gamma\left(e^{\pi+1} \pi^{e+1}-\pi P_{4} / 2\right)}\right)\right) \tag{5}
\end{equation*}
$$

P_{4} again being the $n=4$ approximant to P, is $7.2973525687 \ldots \times 10^{-3}$ compared with its $7.2973525698(24) \times 10^{-3}$ CODATA/NIST 2010 value. Unfortunately, any indications that bifurcations with $n>4$ indeed could be inactive/ignored in $\alpha(0)$ fine-tuning are still lacking. Furthermore, the semi-Planck mass - electron rest mass ratio approximation (its original version in sciencephilosophy.pdf, Eq.2) after replacement of the Thue-Morse constant by its $n=4$ approximant reads

$$
\begin{equation*}
\frac{M_{P}}{2 m_{e}} \approx \frac{\sqrt{2} \ln \left(\delta_{2 D}\right)}{\sqrt{\pi P_{4}\left|C_{D}\right| \ln (\delta)}}\left(\exp \left(\mathrm{y}^{1 / 2} e^{\pi / 2+1 / 2} \pi^{\mathrm{e} / 2+1 / 2}\right)\right) \tag{6}
\end{equation*}
$$

which is $1.194631 \ldots \times 10^{22}$ compared with the masses ratio's value of $1.194652 \ldots \times 10^{22}$ from their CODATA 2010 values. Again, $\mathrm{n}>4$ bifurcations' role (if any) is open. Eq.(6) in terms of $\alpha\left(0 ; P_{4}\right)$ (sciencephilosophy Eq.3) with CODATA 2010α gives $1.194642 \ldots \times 10^{22}$.

And finally the Planck mass - proton rest mass ratio approximation (sciencephilosophy5, Eq.2), when using the $\mathrm{n}=4$ approximant to P reads

$$
\begin{equation*}
\frac{M_{P}}{m_{p}} \approx \frac{1}{\sqrt{\pi P_{4}^{3} / 8}}\left(\exp \left(\gamma^{1 / 2} e^{\pi / 2+1 / 2} \pi^{e / 2+1 / 2}-(\pi+1+(e+1) \ln (\pi))\right)\right) \tag{7}
\end{equation*}
$$

which gives $1.3012 \underline{3} 2 \ldots \times 10^{19}$ compared with $1.301256 \ldots \times 10^{19}$, the numerical value of the ratio calculated from the CODATA $2010 \mathrm{M}_{\mathrm{p}}$ and m_{p} values.

