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Abstract 
The possible role of fractal geometry in scaling electrodynamics’ fundamentals is traced 
in a tentative, heuristic and also constructivistic manner. Mandelbrot set (1) features, e.g. 
external arguments and bifurcation parameters are considered candidate to maybe end 
up in laws of nature.     
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Preface 
In 1909 Albert Einstein found that the dimension of e2/c (= elementary charge squared 
divided by speed of light) is an action as is true for Planck’s constant h. So, he thought 
that there must be a connection. Changed to α=2πe2/hc (in cgs-units), the dimensionless 
ratio (≈ 1/137) named fine-structure constant was introduced by A. Sommerfeld in 1916 
when solving Kepler’s problem in Bohr’s theory, including relativistic dependence of mass 
on velocity. Dirac theory’s (1928) formula for energy eigenvalues of the hydrogen atom 
still contains α in its original context. Quantum electrodynamics (QED) finally allowed for 
calculation of radiative corrections (1949), so turning α’s nature to that of electromagnetic 
force’s accidentally (?) small coupling constant, which weakly depends on the energy κ 
where it is measured. Its value α(0)=0.007297352568(24) (2002 CODATA), coming from 
comparison of experimental and QED results for electron’s anomalous magnetic moment 
(α(0) was confirmed independently by quantum Hall effect precision measurements too), 
is amongst the most precisely known quantities encountered in physics.        
 
Still adhering to the Neo-Einsteinian conviction, one could ask for the fate of the e2/c↔ħ 
connection (if any), and also in this context, if indeed all consequences of the quadratic 
relativistic Hamiltonian (and the S-matrix, yielding probabilities by squaring amplitudes) 
did already manifest themselves. Or looked at the other way round, living with nonlinear 
complex dynamics, does the Mandelbrot set (which belongs to the iterative z→z2+c map) 
yield observable effect(s), if acting as control space (2)? Our quite speculative paper (its 
results could be accidental after all) tries to find such evidence or construct a way things 
could be organized, respectively. If the α(0) approximation Eq.(1) more or less reflected 
reality, whatever this is, electromagnetic force’s coupling couldn’t escape geometrization.  
Because physical objects are seldom self-similar over more than 4 orders of magnitude, 
the zn+1 = zn

2+c process (the Mandelbrot set M is obtained by fixing z0 = 0 and varying the 
c parameter) is not considered a proper description of the real world (3). But here one 
gets one’s sums wrong, disregarding Mandelbrot set M’s structural stability. One inherits 
all its combinatorial features, when iterating (holomorphic) functions, which just (locally) 
had to roughly resemble z → z2+c after proper rescaling (2)).        
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Coupling constant 
Involvement in the theme was quite accidental. By playing with numbers (and educated 
guessing, later in 2005) we found a strange approximation (Eq.(1)) to the fine-structure 
constant α(0) with ingredients from fractal geometry. So far this was nothing special, just 
one more try in α-numerology, e.g. see (4). But what did really amaze us, was the likely 
embeddings of relating the infinite distance limit of electrodynamics’ “running” coupling 
constant to some underlying principle. The expression, resembling Gaussian distribution 
density squared φ2(σX, σ=δ), almost at maximum amplitude, reads     
 
 
                      1                             1 
        α(0)  ≈  —— [exp( −  ———————  )] ,                                                       Eq.(1)    
                    2πδ2              γ(eπ+1πe+1−πP/2)  
 
 
(or with a + P/2  term instead of −πP/2  in its expanded, linearized and modified version), 
where δ is Feigenbaum’s universal number, γ the Euler-Mascheroni constant and  P the 
Thue-Morse constant. This might be pure coincidence, but if there is something in it, the 
result, giving |αapprox.− αexp.(2002 CODATA)| ≤  7. 10-12 (latter value for the less accurate, 
linear version), likely comes from a 1 - 2D nonlinear dynamical problem including period 
doubling oscillations, regarded in the infinite distance and bifurcation limits (and maybe 
infinitesimal limit(s) too). Whole truth could come out far more sophisticated, the problem 
not being restricted to the rest and infinite momentum frames, but demanding correct α(κ) 
for physics in between. So one might have to handle a scenario of complex (likely fractal, 
hopefully not wildly mixing) fluxes’ ratios for continuous κ, regarded in the various limits, 
the infinite distance limit α(0) finally turning out 1/4 of the electric to magnetic integer flux 
quanta ratio. Function α(κ) had to ± satisfy the accessory renormalization group equation.    
All reasoning is restricted to recent time intervals, very small compared to the age of the 
universe, so excluding all aspects of α-variability (see e.g. (6)) other than κ dependence.  
 
Thue-Morse sequence’s involvement pointed towards a digital regime at the infinitesimal 
level. Problem’s obvious complexity demanded a synergetics (5) type approach (possibly 
benefiting from likely good manners of “aggregated” variables), but as matters stand, we 
have to cope with a heuristic, trial-and-error fit procedure at the moment.  
 
 
(Fractional) charge  
Once seen colour pictures of Mandelbrot set potential details, one cannot longer believe 
that objects of this beauty and complexity stayed without a bond to reality. Here, Adrien 
Douady’s dictum (that the sophisticated combinatorial features of the Mandelbrot set M 
seem to indicate) “that external arguments are not just a mathematician’s trick, a useful 
artefact, but that they really occur “in nature” “(2), could maybe get some support. In 2D-
electrostatic analogy, you see, field line starting from point x0 of ∂M, the boundary of the 
Mandelbrot set, finally reaches a point x∞ on a ring electrode at infinity, latter point here 
characterized by an angle, called external argument (2πξ,0≤ξ<1) of x0 with respect to M.  
Electrostatic analogy, which is known to work well for reproduction of interacting strings’ 
topology by topology of equipotential lines (7), could be usefully extended by thinking of 
field lines’ bond to “aggregated”, deeper level variables. Indeed, the so-called external 
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angles ξ(c2) = 1/3 and 2/3, accessory to the first bifurcation of the main series of period 
doublings on the real c-axis of the Mandelbrot set M, coincide with the absolute values of 
quark (electric)charge quantum numbers. For c → cD, the Myrberg-Feigenbaum point, i.e. 
in the limit of infinite bifurcation, the (upper) external angles are known to converge to the 
Thue-Morse constant P. Whatever exact relation between external angle ξ(c) and particle 
fractional charge (or partially aggregated variables of underlying collective phenomena to 
blame for fractional flux quantization, as could be multi-stage magnetic superconductivity) 
might hold for higher bifurcations and in the infinite bifurcation limit, the −γπP/2 (or γP/2) 
small corrections in Eq.(1), if not just accidental, likely emerged from (ratio of) quantities 
tied to charges. Finally, for period 20 - oscillations, the absolute values of leptons charge 
quantum numbers coincide with ξ(c1) = 0 of c1 = 1/4, cusp of the big Mandelbrot cardioïd, 
specific angles being counted modulo 1. If these coincidences are not accidental, kind of 
control on asymptotic properties (of variables |Yi|, Yi Yi & Yi

2) seems to be exerted by M. 
 
If nature simply followed the considered bifurcation path right to the limit, inflation of new 
particles and forces seems inevitable. Particles, at present considered elementary, may 
turn out composite again, as was argued by ‘t Hooft and Ne’eman (8) long time ago. So,  
N = (2k+1) constituents (2k+1 is the denominator of external angles ξ(c2k) with k = 2n, n = 
0,1,2,…ncrit.(?)) most likely formed one particle of period k - oscillation, this being “neutral” 
with respect to the charges associated with the 2k-force. Quark (k=2) substructure would 
then comprise 5 period 4 - particles, each of these 17 period 8 - particles…One can just 
speculate how far this could go down. However, for desirable unification of forces (if still 
possible), the “grand” gauge group G would then end up quite far off the minimal group 
SU(3) x SU(2) x U(1). Huge complexity of ∂M near bifurcation roots ck, just slightly off the 
real axis, would maybe allow for “escape” above some critical period 2n - oscillation, or 
grant “damping” effects and account for a series of transient phenomena, respectively.  
Quantum phase, retroacting on the real c-axis segment via z → ~(z+1/z) conformal map, 
likely required inclusion of infinitesimal limit(s) too (like (c−ck) → 0 at each k for whatever 
function or ratio F(z’,z’k,ξ(z’k)...), or even (c−c0) → 0 limits for every c0 from [cD,1/4]) when 
deriving exact expression for α(κ).   
 
 
Mass scale  
Aside maybe charge-internal corrections, Eq.(1) contains a term likely tied to polarization,   
[1 – its inverse], an approximate charge2 correction factor, being quite unlike QED’s one.  
Expecting log-expressions with large mass2 cut-off, sum total(?) would differ from these.   
Vacuum polarization at ultra-high energy level needn’t fit extrapolated low energy results, 
but one made an even worse mistake by tying such complex matter to an approximation.    
Let Zc

2 be the ℮↔π dual large correction term of Eq.(1), Zc
2 = γ℮π+1π℮+1, then one should 

worry about its very origin or that of Zc, respectively. Amazingly, exp(γ1/2℮π/2+1/2π℮/2+1/2),  
an approximate(?)limit expression, is within the order of Planck mass MP divided by twice 
the electron mass. Instead of γ1/2, usage of z1/2 from ez+1ze+1 = πP/2 gave approximation 
to around − 3%. But the fit could easily be made almost perfect, e.g. by finding a logically 
plausible pre-factor A to exp(|Zc|), best being a ratio of limit quantities. If one took P, the 
external angle tied to the infinite bifurcation limit, formed pre-factor (±)P/(2P−1) and used 
the 2002 CODATA values for MP and me, one would get a deviation of the approximated 
MP/2me ratio (= Pexp(|Zc|)/(2P-1) in this case) from the experimental one of about 0.01%.  
In the k = 1 limit of ξ(ck), ξ(c)/(2ξ(c)−1), giving P/(2P−1) for infinite k, converged to 1/ln(2).  
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Several hundred combinations of period-doubling specific variables or ratios were tested. 
Best fit (to 6ppm) was obtained choosing the pre-factor (2/(πP))1/2ln(δ2D)/(|cD|ln(δ)), a less 
accurate value (to 130ppm) with Γ1/2(γ)ln(δ2D)/(|cD|ln(δ)). Both A-expressions contain δ2D, 
Feigenbaum’s number for an area-preserving 2-dimensional map (9, 10), so reflecting 2D 
character of mass. Reinserting the approximated α(0) into the mass ratio approximation 
with any good fit pre-factor A then would give MP/me ≈ 2Aexp((γπP/2−1/ln(2πδ2α(0)))1/2). 
At maximum simplicity, pretty good fit for mass fine-tuning could be obtained by taking 
√A2(ξ(c)) in the Myrberg-Feigenbaum limit cD. But much better fit, welcome degrees of 
freedom for meeting correct α(κ) and the whole problem’s degree of sophistication clearly 
favour the use of A(c, ck, ξ(c), ξ(ck), δk, δ2D,k) in the infinite k limit, thus yielding the ratio 
 
                       _ 
        MP        √2 ln(δ2D)                 
        —    ≈     exp(γ1/2eπ/2+1/2πe/2+1/2).                                                        Eq.(2)                      
       2me     √πP|cD|ln(δ) 
  
 
Finally, “log-potentials” matched 2D situation, and exp(exp( )) allows for the huge scale.  
Rewritten in terms of external angles and Mandelbrot set’s real c-axis values,√πΡ/2 were 
Γ(ξ(−2))√ξ(−2)ξ(cD), containing the geometric mean of the external angles accessory to 
c= −2 , left end of M, or cD , the Myrberg-Feigenbaum point, respectively. Approximation 
Eq.(2) can be rewritten too, using α(0) from its approximation (Eq.1), yielding 
 
                       _ 
        MP        √2 ln(δ2D)                 
        —    ≈     exp((γπP/2−1/ln(2πδ2α(0)))1/2).                                          Eq.(3)                       
       2me     √πP|cD|ln(δ) 
 
 
Much less accurate than for α(0), but nevertheless with adequate precision, electron rest 
masses approximate position on the Planck mass scale could in principle be reproduced 
without using “unnatural” variables, not yet available from the nonlinear dynamics’ store.  
But one has to accept deductionists’ aversion to both constructivistic (or even considered 
autistic) bottom-up approaches. Thus, we regret having only been able to offer a simple, 
tentative procedure plagued by a high degree of arbitrariness. Future etiology of why/how 
electrodynamics’ fundamentals acquire the values they happen to have, might well some 
day confirm the period-doubling specific variables’ impact.    
 
 
Conclusions 
Concluding, there seem to be indications that electron rest mass fine-tuning and charge 
quantization might be tied to fractal geometry. At least, such bond could be constructed.  
There indeed could be good reasons for concentration upon nonlinear dynamics (in 1D 
and 2D) of suitable objects (if appearing in the six and more extra-dimensions to space-
time context or elsewhere), the tools nature might have to cope with for agglomeration of 
what we “macroscopically” use to call charge and mass. Much arbitrariness still prevents 
one from significant statements, for instance that the Mandelbrot set M, lacking dynamics 
of its own, really acts on the physical world as kind of control space.   

-4- 



References 
(1)   Mandelbrot, B.B.  Fractal aspects of the iteration of z→λz(1-z) for complex λ and z.  
       In: Nonlinear Dynamics, Helleman, R.H.G, (ed.). Annals New York Acad. Sciences, 
       357, 249 – 259 (1980)  
 
(2)   Douady, A.  Julia Sets and the Mandelbrot Set in: Peitgen, H.-O. & Richter, P.H. The 
       Beauty of Fractals, 172 (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986) 
 
(3)   Peitgen, H.-O. & Richter, P.H.  The Beauty of Fractals, 18 (Springer-Verlag, Berlin- 
       Heidelberg-New York-Tokyo, 1986)     
 
(4)   Eric Weisstein’s World of Physics, WOLFRAM RESEARCH http://scienceworld. 
       wolfram.com/physics/FineStructureConstant.html 
 
(5)   Haken, H.  Synergetics. An Introduction, 3rd ed. (Springer-Verlag, Berlin, Heidelberg,  
       New York, 1983) 
 
(6)   Bekenstein, J.D.  Fine-structure constant variability, equivalence principle and  
       cosmology. arXiv:gr-qc/0208081 (2002) 
 
(7)   Kaku, M.  Introduction to Superstrings and M-Theory, Second Edition, 279 (Springer- 
       Verlag, New York, 1999) 
 
(8)   ‘t Hooft, G.  Beyond Perturbation Expansion. In: Ne’eman, Y. (ed.) To Fulfill a Vision. 
        Jerusalem Einstein Centennial Symposium on Gauge Theories and Unification of 
        Physical Forces,133 (Addison-Wesley Publishing Company Inc London-Amsterdam- 
        Don Mills, Ontario-Sydney-Tokyo, 1981), and discussion statement by Ne’eman, Y. 
 
(9)   Tabor, M.  Chaos and Integrability in Nonlinear Dynamics: An Introduction, 225 
        (Wiley, New York, 1989) 
 
(10)  Weisstein, Eric W.  “Feigenbaum Constant”. From MathWorld--A Wolfram Web  
        Resource. http://mathworld.wolfram.com/FeigenbaumConstant.html 
 
 
 
 
 
 
 
 

-5- 


