Appendix (F1): Internal supplement (Aug. 2020): Hausdorff dimension and particle motion

F.J. Culetto and W. Culetto Private Research-Associates, Stallhofen 59-60, 9821 Obervellach, Austria

Within our tentative description of all things / structures and the dynamics there are by using Julia set fractals J and their control spaces / connectedness loci (for the second order polynomials iterated, the main and midget Mandelbrot M sets), J(z)'s effective Hausdorff dimension $D_H^{eff}(J)$, $1 \le D_H^{eff}(J) \le 2$, carries relative information on particles' motion and mass. As the Js are subsets of the plane, a simple method for restricting $D_H(J(z))$ to [1, 2] in all cases of non-pathological relative motion would be its tentative, exchange-symmetric (abbreviated) formulation as

$$D_{H}^{res} = \frac{D_{H}^{(p)} D_{H}^{(sys)}}{1 + (D_{H}^{(p)} - 1)(D_{H}^{(sys)} - 1)} , \qquad Eq.(1)$$

where (p) denotes the moving (quantum) particle. For $(D_H^{(p; sys)} - 1) = \beta^{(p; sys)}$, the composition law of velocities in SR is recoverable, as was shown in the Appendix (E) presented on our <u>www.culetto.at</u> website. In this case, the masses ratio m/m₀ and its Taylor-series expansion would be

In case of small complex λ , the Hausdorff dimension of the Julia set J belonging to the iterative $z \rightarrow z^q + \lambda$ map was calculated by D. Ruelle (1982, Ergod.Th. & Dyn. Syst. 2, 99 -107), and – converted to our quadratic-J_C situation (t = D_H(J_C), q = 2 and λ = C) – is

$$D_{H}(J_{\mathbb{C}}) = 1 + \frac{|\mathbb{C}|^2}{4\ln(2)} + \text{ higher-order-in-}\mathbb{C} \text{ terms}$$
 Eq.(3)

As initially thought (and expressed in our Appendix (B)), for the *low velocity regime* of classical dynamics, $m/m_0 \approx D_H(J_c)$ could have been the likely simplest relation/ansatz. But as given in Eq.(2), $m/m_0 = f(D_H(J_c))$ is not that simple, SR's β would thus result in

$$D_{H}(J_{\mathbb{C}}) - 1 = \frac{|\mathbb{C}|^2}{4\ln(2)} + \text{ higher-order-in-}\mathbb{C} \text{ terms },$$
 Eq.(4)

the term quadratic in \mathbb{C} now being the right formulation of our *Dorfer's* β suggestion.