Appendix (F1): Internal supplement (Aug. 2020):
Hausdorff dimension and particle motion

F.J. Culetto and W. Culetto
Private Research-Associates, Stallhofen 59-60, 9821 Obervellach, Austria

Within our tentative description of all things / structures and the dynamics there are by using Julia set fractals J and their control spaces / connectedness loci (for the second order polynomials iterated, the main and midget Mandelbrot M sets), $J(z)$'s effective Hausdorff dimension $D_{H}{ }^{\text {eff }}(J), 1 \leq D_{H}{ }^{\text {eff }}(J) \leq 2$, carries relative information on particles' motion and mass. As the Js are subsets of the plane, a simple method for restricting $\mathrm{D}_{\mathrm{H}}(\mathrm{J}(\mathrm{z}))$ to $[1,2]$ in all cases of non-pathological relative motion would be its tentative, exchange-symmetric (abbreviated) formulation as

$$
\begin{equation*}
D_{H}^{\text {res }}=\frac{D_{H}^{(p)} D_{H}^{(\text {sys })}}{1+\left(D_{H}^{(p)}-1\right)\left(D_{H}^{(\text {sys })}-1\right)}, \tag{1}
\end{equation*}
$$

where (p) denotes the moving (quantum) particle. For $\left(D_{H}{ }^{(p ; \text { sys })}-1\right)=\beta^{(p ; \text { sys })}$, the composition law of velocities in SR is recoverable, as was shown in the Appendix (E) presented on our www.culetto.at website. In this case, the masses ratio $\mathrm{m} / \mathrm{m}_{0}$ and its Taylor-series expansion would be

$$
\begin{align*}
& m \\
& m_{0} \tag{2}
\end{align*}=\frac{1}{\left[D_{H}^{(p)}\left(2-D_{H}^{(p)}\right)\right]^{1 / 2}}=1+\left(D_{H}^{(p)}-1\right)^{2} / 2+\text { higher-order-in- } \beta \text { terms }
$$

In case of small complex λ, the Hausdorff dimension of the Julia set J belonging to the iterative $z \rightarrow z^{q}+\lambda$ map was calculated by D. Ruelle (1982, Ergod.Th. \& Dyn. Syst. 2, $99-107)$, and - converted to our quadratic- $J_{\mathbb{C}}$ situation $\left(t=D_{H}\left(J_{\mathbb{C}}\right), q=2\right.$ and $\left.\lambda=\mathbb{C}\right)$ - is

$$
\begin{equation*}
D_{H}\left(J_{\mathbb{C}}\right)=1+\frac{|\mathbb{C}|^{2}}{4 \ln (2)}+\text { higher-order-in- } \mathbb{C} \text { terms } \tag{3}
\end{equation*}
$$

As initially thought (and expressed in our Appendix (B)), for the low velocity regime of classical dynamics, $m / m_{0} \approx D_{H}\left(J_{\mathbb{C}}\right)$ could have been the likely simplest relation/ansatz. But as given in Eq. $(2), m / m_{0}=f\left(D_{H}\left(J_{\mathbb{C}}\right)\right)$ is not that simple, SR's β would thus result in

$$
\begin{equation*}
\mathrm{D}_{\mathrm{H}}\left(\mathrm{~J}_{\mathbb{C}}\right)-1=\frac{|\mathbb{C}|^{2}}{4 \ln (2)}+\text { higher-order-in- } \mathbb{C} \text { terms } \tag{4}
\end{equation*}
$$

the term quadratic in \mathbb{C} now being the right formulation of our Dorfer's β suggestion.

