## Appendix concerning special Mandelbrot set features

F.J. Culetto and W. Culetto\*) Private Research Associates, Stallhofen 59-60, A-9821 Obervellach, Austria \*Electronic address: werner.culetto@inode.at (Dated: October 5, 2006)

## Abstract

The appendix contains approximate functions/expressions in the Mandelbrot set context, concerning external angles  $\xi(c)$ , bifurcation parameters ( $c_k$ ) and other real c-axis values.

Keywords: Mandelbrot set, external angles, bifurcation parameters, main bifurcation series, approximations

## Contents

For visualization and rough considerations using external angles  $\xi(c)$  accessory to real c values  $\in$  [-2, c<sub>D</sub>] as well as to the main bifurcation series on the real c-axis segment [c<sub>D</sub>, 1/4] of the Mandelbrot set, M = {c  $\in$  C: Julia set J<sub>c</sub> for given c is connected}, holomorphic functions approximating the discrete  $\xi$  values were looked for. Fit precision to some 10<sup>-3</sup> and elementary functions proved to be sufficient for the task. The unusual terminology of angles goes back to calculations using external angles in the electromagnetic coupling  $\alpha$  (fine-structure constant) context, so the usual  $\alpha(c)$  spelling for angles was abandoned.

In a relatively straightforward procedure, remarkably simple expressions for continuation of the discrete  $\xi(c_k)$  and  $\xi(c)$ , for both lower and upper external angles each, were found:

$$\begin{split} \xi(c) &\approx \ 1 \ + \ \frac{2\mathsf{P}}{\pi} \ ATAN \ (\frac{2(c-1/4)}{(c-c_D)}) \quad \text{and} \quad - \ \frac{2\mathsf{P}}{\pi} \ ATAN \ (\frac{2(c-1/4)}{(c-c_D)}) \quad \text{for } c \in [c_D, \ 1/4], \\ \xi(c) &\approx \ \frac{1}{2} \ \pm \ (\frac{1}{2} \ - \ \mathsf{P})(1 \ - \ \frac{(c-c_D)^2}{(2+c_D)^2})^{1/2} \quad \text{for } c \in [-2, \ c_D], \end{split}$$

where P is the Thue-Morse constant,  $c_D$  the Myrberg-Feigenbaum point's coordinate, and c are real c-axis values of M. For external angles  $\xi$  are  $\geq 0$  and counted modulo 1, the fit functions' range of applicability is correspondingly restricted.

Our heuristic study, tracing a possible role of fractal geometry in scaling electrodynamics' fundamentals, suggested some relations between the  $\xi(c_k)$  of the main bifurcation series and specific charge or between  $\xi(c)$ ,  $c < c_D$  and specific (rest) mass, respectively. Indeed, the  $\xi(c)\xi(c_k)$  product appeared in correction terms (maybe from charge-mass interaction). The continuous  $\xi(c)$  fit curves' significance (if any) or such of better approximations is still unknown, but the  $(c - c_D)^2/(2 + c_D)^2 + (\xi(c) - 1/2)^2/(1/2 - P)^2 = 1$  ellipse would reach until  $(2 + 2c_D)$  in c, i.e. between the first and second bifurcation of the main series. Thus, one

maybe could expect an observable effect in quark substructure of our hypothetical view. Furthermore, the  $\Delta \xi = (\xi(-2) - \xi(c_D)) = (1/2 - P)$  difference in external angle, if significant in this connection, additionally appeared between the "analytically continued"  $\xi(c)$  and the approximated, continuous  $\xi(c_k)$  curve at  $c_{\Delta\xi} \approx -0.92$ . The figure below shows discrete  $\xi_u$  (upper external angle) values belonging to the main bifurcation series incl. the Myrberg-Feigenbaum point, to the Großmann-Thomae band merging point, to  $c_1$  of the secondary Mandelbrot set and to the left end of M (data points), approximated by fit functions  $\xi_u(c)$ .





Concluding, one gets the impression that the possible bond of external angles to physical observables (if the corresponding working hypotheses turned out to be true) goes back to a situation with *phases' extraordinary relevance* (well beyond their mere presence in non-integrable phase factors, as could be the case for some sophisticated phase modulation or/and coding at constant analogue (or even digital) amplitude, where phase functionals likely carry the entire meaningful information), which seems to escape proper treatment within the conventional gauge theoretical framework.