M-set hyperbolic components tuning the matter / dark matter / dark energy pie chart? Details - Internal Comments (Appendix, March 2019)

F.J. Culetto and W. Culetto<br>Private Research-Associates, Stallhofen 59-60, A-9821 Obervellach, Austria

There are a few further details to be added to our said internal comments on the matter, which is presented on our www.culetto.at website. The terminology remains unchanged: M-set big cardioid's area $\mathrm{A}_{2}{ }^{0}=3 \pi / 8$, the "inflated" cardioid's area $\mathrm{A}_{2}{ }^{\circ}{ }^{\circ} \mathrm{infl}=3 \pi\left(1 / 4+\mathrm{C}_{\mathrm{D}}\right)^{2} / 2$ ( $c_{D}$ is the main bifurcation series Myrberg-Feigenbaum point's coordinate -1.401 155... + $0 i)$, the maximally permissible $c$-disc $A_{c \text {-disc }}=16 \pi$ for preservation of $M$ 's combinatorial features, as well as the $z=0$ cosmological parameters $\Omega_{\mathrm{m}, \mathrm{0}}$ and $\Omega_{\mathrm{dm}, 0}$ being compared with the Planck collaboration's 2015 results.

$$
\begin{align*}
& \Omega_{\mathrm{m}, 0}=\frac{2\left(\mathrm{~A}_{2}{ }^{0}\right)}{\mathrm{A}_{\mathrm{c} \text {-disc }}-2 \mathrm{~A}_{2^{0}}}=0.049 \underline{180} \ldots  \tag{1}\\
& \Omega_{\mathrm{dm}, 0}=\frac{2\left(\mathrm{~A}_{2^{0}}{ }^{\mathrm{infl}}-\mathrm{A}_{2^{0}}\right)}{\mathrm{A}_{\mathrm{c} \text {-disc }}-2 \mathrm{~A}_{2^{0} \text { infl }}}=0.268 \underline{2} 41 \ldots \tag{2}
\end{align*}
$$

The inflated cardioid area generating circles' diameter ${ }_{2}{ }_{2}{ }^{\circ}{ }^{i n f l}=\left|c_{D}\right|-1 / 4$ was found by extrapolating that of the main cardioid ( $\mathrm{a}_{2}{ }^{0}=\mid \mathrm{c}_{\mathrm{k}=2} \mathrm{I}-1 / 4 ; \mathrm{c}_{\mathrm{k}=2}=-3 / 4$ ) to the inf-k-limit. In order to possibly generate any statements about the non-zero redshift cosmological parameters in case of $\Omega_{\mathrm{dm}} / \Omega_{\mathrm{m}}$ being approximately $\Omega_{\mathrm{dm}, 0} / \Omega_{\mathrm{m}, 0}$, generalization of the Eqs. (1) and (2) by use of Mandelbrot set real c-axis Icl values as common variable is thought of being a viable route. The cardioids' areas ( $3 \pi a_{i}^{2} / 2$ ) inserted, these above two relations yield

$$
\begin{align*}
& \Omega_{\mathrm{m}}(|c|)=\frac{3|c|^{2}}{16-3|c|^{2}} \text {, giving } \Omega_{m, 0} \text { as reference for }|c|=1 / 2 \text {, and } \\
& \Omega_{\mathrm{dm}}(|c|)=\frac{3 f(|c|)^{2}-3|c|^{2}}{16-3 f(|c|)^{2}} \text {, which should yield } \Omega_{\mathrm{dm}, 0} \text { for }|c|=1 / 2 . \tag{3}
\end{align*}
$$

As $f(|c|)$ then has to be $\left(\left|c_{D}\right|-1 / 4\right)$, the ansatz of $f(|c|)$ a $\operatorname{ATAN}\left(\left(\left|c_{D}\right|-1 / 4\right)|c|\right)$ would be chosen, and the proportionality factor $c_{0}$ get calculated from the $\Omega_{\mathrm{dm}} / \Omega_{\mathrm{m}} \approx \Omega_{\mathrm{dm}, 0} / \Omega_{\mathrm{m}, 0}$
constraint. The ansatz was motivated by an older result of ours in approximation of the Mandelbrot set main bifurcation-series root $c_{k}$ 's discrete upper external angles then by a continuous fit function of $\sim \operatorname{ATAN}\left((\mathrm{g}(\mathrm{c}))\right.$ shape for $\mathrm{c} \in\left[\mathrm{c}_{\mathrm{D}}, 1 / 4\right]$. By using expressions and constants commonly found in 1-2D nonlinear dynamics, the factors $\mathrm{C}_{0}=(2+\mathrm{P} / 2)$, P being the Thue-Morse constant ( $=$ upper external angle of $\mathrm{C}_{\mathrm{D}}$ in the M -set), also $\mathrm{C}_{0}=$ $\pi\left(I c_{D} \ln \left(\delta_{2 D}\right) / \ln (\delta)\right)^{1 / 2} / 2\left(\delta\right.$ and $\delta_{2 D}$ being the Feigenbaum numbers for a 1D or an areapreserving 2D map, respectively) are gotten as pretty good numerical fit results. Thus, the following approximation curve,

$$
\Omega_{\mathrm{dm}}(|c|) \approx \frac{3\left[c_{0} \operatorname{ATAN}\left(\left(\left|c_{D}\right|-1 / 4\right)| | c \mid\right)\right]^{2}-3|c|^{2}}{16-3\left[c_{0} A T A N\left(\left(\left|c_{D}\right|-1 / 4\right)|c|\right]^{2}\right.},
$$

is producing $\Omega \mathrm{dm}$ (Icl) results respecting the $\Omega_{\mathrm{dm}} / \Omega_{\mathrm{m}} \approx$ const.- constraint, at least up to $\mathrm{IcI}=1 / 2$ when using the more complicated $\mathrm{c}_{0}$, but with some deviations tolerated then further up to $\mathrm{IcI} \approx 0.68$ where one encounters already ca. twice the $\Omega_{\mathrm{m}+\mathrm{dm}, \mathrm{o}}$ value. The formal constraint equation, which only makes sense in the treated Icl-region or maybe even slightly less, is

$$
\begin{equation*}
F(|c|)=\operatorname{SQRT}\left[\left(16|c|^{2}\left(1+\Omega_{\mathrm{dm}, 0} / \Omega_{\mathrm{m}, 0}\right)-3|c|^{4}\right) /\left(16-3|c|^{2}\left(1-\Omega_{\mathrm{dm}, 0} / \Omega_{\mathrm{m}, 0}\right)\right] .\right. \tag{6}
\end{equation*}
$$

In a FLRW-universe context, the $\Omega_{\mathrm{m}+\mathrm{dm}}$ (a) parameter - a here denoting the scale factor $a(t)$ versus $a_{i}$ for cardioids - in the case of flat space \& still negligible $\Omega$ radiation would be

$$
\begin{equation*}
\Omega_{\mathrm{m}+\mathrm{dm}, 0} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \Omega_{m+d m}(a) \approx \frac{a+\Omega_{m+d m, 0}(1-a)+\Omega_{\wedge, 0}\left(a^{3}-a\right)}{} \text {, and our related expression is } \\
& \Omega_{m+d m}(|c|) \approx \frac{3|c|^{2}}{16-3|c|^{2}}+\frac{3\left[c_{0} A T A N\left(\left(\left|c_{D}\right|-1 / 4\right)|c|\right)\right]^{2}-3|c|^{2}}{16-3\left[c_{0} A \operatorname{ATAN}\left(\left(\left|c_{D}\right|-1 / 4\right)|c|\right]^{2}\right.} .
\end{align*}
$$

When substituting the variable Icl by the derivative of $\operatorname{ATAN}(\mathrm{a})$, i.e. $1 /\left(1+\mathrm{a}^{2}\right)$ in Eq.(8), $\mathrm{c}_{0}$ being $\pi\left(\operatorname{lc} C_{D} \ln \left(\delta_{2 D}\right) / \ln (\delta)\right)^{1 / 2} / 2$, pretty good fit to the $\Omega_{\mathrm{m}+\mathrm{dm}}$ (a) curve is obtainable, at least around $\mathrm{a}=1$ (where $\mathrm{IcI}=1 / 2$ ). For $\mathrm{a}<1$, and if staying in the region where the relation makes sense, the fit curve would show a little less thinning out of matter and dark matter
compared to Eq.(7), whereas in (our) universe's future, dilution of the said components would proceed somewhat faster.

Under the same conditions where Eq.(7) holds, $\Omega_{\wedge}(\mathrm{a})$ in the FLRW universe would be

$$
\Omega_{\wedge}(a) \approx \frac{\Omega_{\wedge, 0} a^{3}}{a+\Omega_{m+d m, 0}(1-a)+\Omega_{\wedge, 0}\left(a^{3}-a\right)}
$$

and our related expression for $\Omega_{\wedge}$ ( IcI ) (from a $\Omega_{\wedge, 0}$ approximant found accidentally) is

$$
\begin{equation*}
\Omega_{\wedge}(|c|) \approx 1-\frac{3\left[\left(4+C_{D}\right)|c|\right]^{2}}{16} \tag{10}
\end{equation*}
$$

When substituting the variable Icl by $1 /\left(1+a^{2}\right)$ in Eq.(10), pretty good fit to the $\Omega_{\wedge}(a)$ curve Eq. (9) is obtainable this time, at least around $\mathrm{a}=1$ (where $\mathrm{Icl}=1 / 2$ ). Eq.(10) is a "continuation" of our $\Omega_{\Lambda, 0}$ approximation which was $\Omega_{\Lambda, 0} \approx\left(A_{c \text {-disc }}-3 \pi\left(4+c_{D}\right)^{2} / 4\right) / A_{c \text {-disc }}$, this yielding $\left(1-3\left(4+C_{D}\right)^{2} / 64\right.$. The subtracted term in the brackets of the former formula is half the area of a cardioid with generating circle diameter $\left(4+c_{D}\right)$. As double covering of cardioid areas in the $\Omega_{\mathrm{m}}$ and $\Omega_{\mathrm{dm}}$ context was a kind of accounting for fermion spin (this inspired by Yuval Ne'eman's then discussion statement on the appearance of the double covering of the Lorentz group in: To fulfill a vision, Y. Ne'eman (ed.), 20 (1981), Addison-Wesley), one may ask what half covering could mean in connection with $\Omega_{\wedge}$, thought of being the $\Omega_{\text {dark energy }}$ part of $\Omega_{\text {total. }}$. Restriction to single covering of the cardioid area's half located in the upper complex c-parameter half-plane would produce the right result, but why do so? In the present-time dark matter and dark energy share context, the involved cardioids' generating circle diameters are $\operatorname{ABS}\left(1 / 4+c_{D}\right)$ and $\operatorname{ABS}\left(4+c_{D}\right)$, these expressions maybe co-resulting from a duality. But there is an important caveat:

Such considerations would only make sense if not being pursuing a just coincidental relation, or if not being caught in a kind of self-trapping circular arguing, respectively. From our older results we probably may conclude that the Mandelbrot set, if used as a control space by nature, would primarily be effective in shaping the asymptotic behavior of relative, dimensionless physical quantities. The M-set, being a subset of a complex parameter plane, would likely just support locality in case of a Riemann-curved space, but it should apply to extended scales in the flattened-out-space approximation case.

